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The Setup

z

Figure 1: An example of a section cylindrical waveguide with embedded coordinate axes.

A conducting waveguide is a metal tube – think pipe or air conditioning duct, for example –
through which electromagnetic waves can propagate. If you want to know what real-life waveguides
look like, just do a quick internet image search. We’ll assume the length of the tube is oriented
along the z-direction, see Fig 1. There is no loss of generality in doing this, since we can always
choose a coordinate system as we like. So really, we’re picking a coordinate system such that the
z-axis points along the tube.

Now, we can decompose the electric field ~E and magnetic (inductance) field ~B vectors into two
parts each. One part points along the z (normal) direction while the other is pointing somewhere
in the xy (transverse) plane. Explicitly:

~E = Ez ẑ + ~Et (1a)
~B = Bz ẑ + ~Bt (1b)

In the first([1], Eq. (8.24)) and third([2], Eq. (8.26)) editions of Classical Electrodynamics, J.D.
Jackson gives the transverse fields in terms of the z-components of the fields. (I have no idea why
he left the complete expression out of the second edition.) In the third edition, for example, he
assumes plane wave propagation in the positive z direction – that is an e+ikz dependance – and
simply states, without any real explanation:
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the transverse fields are

~Et =
i(

µεω2

c2
− k2

)
[
k∇tEz − ω

c
ẑ ×∇tBz

]

~Bt =
i(

µεω2

c2
− k2

)
[
k∇tBz + µε

ω

c
ẑ ×∇tEz

]

where I’ve converted his new choice of MKSA units back into the clearer CGS units.
However, back in the first edition he does not insist on the assumption of positive z propagation.

Moreover, he does not just state the fields; he suggests a method for getting them – namely,
manipulation of the curl equations in Maxwell’s equations. However, in that edition, he does
not expand the curl equations in light of the separation of the fields into transverse and parallel
components as he does in the second and third editions.

Because of all this confusion, I’m going to derive the cavity modes fully, starting from Maxwell’s
equations, once and for all. This derivation is based on a combination of all three editions of
Jackson’s book. This is a tedious, although not completely trivial exercise. Brace yourselves for
quite a bit of algebra.

Maxwell’s Equations - The Curls

Here we’ll deal with the two curl equations in Maxwell’s equations:

∇× ~E = −1
c

∂ ~B

∂t
(2a)

∇× ~H =
1
c

∂ ~D

∂t
+

4π

c
~J (2b)

where H is the magnetic field and D is the electric displacement field. We will assume the inside
of the waveguide has uniform permittivity and permeability, so ~D = ε ~E and ~B = µ ~H. Also, we’ll
assume the absence of any currents, so ~J = 0 and we’ll drop it from here on. Additionally, we’ll
assume the same sinusoidal time dependance e−iωt for both the fields. Thus, the time derivatives
“bring down” a factor of −iω.

Furthermore, since we’re splitting up ~E and ~B into normal and transverse parts, we’ll do the
same with the gradient operator ∇:

∇ = x̂
∂

∂x
+ ŷ

∂

∂y︸ ︷︷ ︸
≡∇t

+ẑ
∂

∂z
= ∇t + ẑ

∂

∂z

Because curl equations are annoying, and because we’re ultimately looking for an equation for
the transverse fields, I’m going to try and get rid of the ∇×’s. The symmetry of form in (2) means
that we’ll only need to do these calculations once; I will use ~A in place of either ~E or ~B.

First, we’ll expand ∇× ~A:

∇× ~A =
[
∇t + ẑ

∂

∂z

]
×

[
~At + ẑAz

]

= ∇t × ~At +∇t × ẑAz +
∂

∂z

[
ẑ × ~At

]
+

∂

∂z

[
»»»ẑ × ẑ 0Az

] (3)
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Figure 2: Vectors ~At, ẑ × ~At and ẑ × ẑ × ~At

We’ve killed one term through this expansion. However, the leftmost cross product term ∇t × ~At

gives a quantity with only a z component. The righthand side of these equations also have a ẑ
term. We can get rid of both by multiplying the entire equation(s) by ẑ×:

ẑ ×∇× ~A = »»»»»»
ẑ ×∇t × ~At

0 + ẑ ×∇t × ẑAz +
∂

∂z


ẑ × ẑ × ~At︸ ︷︷ ︸

− ~At




= ẑ ×∇t × ẑAz − ∂ ~At

∂z

(4)

For why ẑ × ẑ × ~At = − ~At see Fig. 2. Also, we note that

ẑ ×∇t × ẑ = ẑ × (−ẑ ×∇t) = ∇t (5)

for the same reason. We could have used the vector multiplication identity

a× (b× c) = (a · c)b− (a · b)c
to simplify both of these expressions, or expanded∇t and ~At and carried through even more algebra,
but I think the picture is clearer.

Thus,

ẑ ×∇× ~A = ∇tAz − ∂ ~At

∂z
, (6)

and we can write (2) as

∇tEz − ∂ ~Et

∂z
=

iω

c
ẑ × ~Bt (7a)

∇tBz − ∂ ~Bt

∂z
= −iµε

ω

c
ẑ × ~Et (7b)

At this point, it’s time to introduce the explicit z dependence and process the z derivatives.

3



Some ± and ∓ notes

Unlike Jackson, who works with the assumption of upward propagating waves – i.e. an e+ikz

dependence – we’ll work with an assumed e±ikz dependance, thus allowing both upward and down-
ward propagating waves. Thus, the z derivatives “bring down” a factor of ±ik. Whenever we have
± or ∓ the upper symbol is the sign for upward propagating waves, the lower symbol is for down-
ward propagating. Because we’ll be mucking about with these plus-minus guys in some algebra, I
want to get a few issues out of the way.

The first thing to keep in mind about these plus-minus operators is that an equation like

A = ±C + D (8)

is shorthand for two different equations:

A = +C + D (9a)
A = −C + D (9b)

So, there are essentially two ways to approach these things. One way is to carefully trace at the
outset what happens to ± or ∓ under various arithmetic operations like addition, multiplication,
etc. This has the benefit of being more concise – you only need to write each equation once – but is
a lot easier to make errors and hides the double-equation nature of the symbol. I’ll admit, though,
that when I’m writing a paper I’m generally inclined to take this path.

However, for the purposes of this blog post, I’ll explicitly carry out the calculations in parallel
equations. The left-hand column corresponds to +, the right-hand column to −. At the end I will
also show what the results looks like in the shorthand notation and I encourage you to work out
the rules on your own. Perhaps in another post I’ll address the shorthand notation in detail.
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Some more algebra

Now, it’s time for some more algebra.1 Taking the z derivative in (7) gives:

∇tEz − ik ~Et = i
ω

c
ẑ × ~Bt (10a) ∇tEz + ik ~Et = i

ω

c
ẑ × ~Bt (10b)

and

∇tBz − ik ~Bt = −iµε
ω

c
ẑ × ~Et (11a) ∇tBz + ik ~Bt = −iµε

ω

c
ẑ × ~Et (11b)

Solving (10) for ~Et gives

~Et = − i

k
∇tEz − ω

ck
ẑ × ~Bt (12a) ~Et = +

i

k
∇tEz +

ω

ck
ẑ × ~Bt (12b)

Substituting this into (11) and simplifying:

∇tBz − ik ~Bt = −iµε
ω

c
ẑ ×

[
− i

k
∇tEz − ω

ck
ẑ × ~Bt

]

= −µε

k

ω

c
ẑ ×∇tEz + i

µε

k

ω2

c2
ẑ × ẑ × ~Bt︸ ︷︷ ︸

− ~Bt

∇tBz = − i

k

(
µε

ω2

c2
− k2

)
~Bt − µε

k

ω

c
ẑ ×∇tEz

(13a)

∇tBz + ik ~Bt = −iµε
ω

c
ẑ ×

[
i

k
∇tEz +

ω

ck
ẑ × ~Bt

]

=
µε

k

ω

c
ẑ ×∇tEz − i

µε

k

ω2

c2
ẑ × ẑ × ~Bt︸ ︷︷ ︸

− ~Bt

∇tBz = +
i

k

(
µε

ω2

c2
− k2

)
~Bt +

µε

k

ω

c
ẑ ×∇tEz

(13b)

Solving this for ~Bt gives:

~Bt =
1(

µεω2

c2
− k2

)
[
ik∇tBz + iµε

ω

c
ẑ ×∇tEz

]
(14a) ~Bt =

1(
µεω2

c2
− k2

)
[
−ik∇tBz + iµε

ω

c
ẑ ×∇tEz

]
(14b)

1In case you were wondering why Jackson left out the whole calculation...
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Or, in ± form:

~Bt =
1(

µεω2

c2
− k2

)
[
±ik∇tBz + iµε

ω

c
ẑ ×∇tEz

]
(15)

In the first edition, Jackson converts the ±ikBz back into ∂Bz
∂z to get rid of the ±, but I feel this confuses things, as this expression

only holds for a plane wave in the z direction. In any case, we now substitute this expression for ~Bt back into (12) and simplify:

~Et = − i

k
∇tEz − ω

ck
ẑ × 1(

µεω2

c2
− k2

)
[
ik∇tBz + iµε

ω

c
ẑ ×∇tEz

]

= − i

k
∇tEz −




i
ω

c

1(
µεω2

c2
− k2

) ẑ ×∇tBz+

+
i

k

µεω2

c2(
µεω2

c2
− k2

) ẑ × ẑ ×∇tEz︸ ︷︷ ︸
−∇tEz




= ik
1(

µεω2

c2
− k2

)∇tEz − i
ω

c

1(
µεω2

c2
− k2

) ẑ ×∇tBz

=
1(

µεω2

c2
− k2

)
[
ik∇tEz − i

ω

c
ẑ ×∇tBz

]

(16a)

~Et =
i

k
∇tEz +

ω

ck
ẑ × 1(

µεω2

c2
− k2

)
[
−ik∇tBz + iµε

ω

c
ẑ ×∇tEz

]

=
i

k
∇tEz +




−i
ω

c

1(
µεω2

c2
− k2

) ẑ ×∇tBz+

+
i

k

µεω2

c2(
µεω2

c2
− k2

) ẑ × ẑ ×∇tEz︸ ︷︷ ︸
−∇tEz




= −ik
1(

µεω2

c2
− k2

)∇tEz − i
ω

c

1(
µεω2

c2
− k2

) ẑ ×∇tBz

=
1(

µεω2

c2
− k2

)
[
−ik∇tEz − i

ω

c
ẑ ×∇tBz

]

(16b)

Or, in ± form:

~Et =
1(

µεω2

c2
− k2

)
[
±ik∇tEz − i

ω

c
ẑ ×∇tBz

]
(17)

So, we’ve finally achieved Jackson’s result, allowing for both upward and downward propagating waves.
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