Derivative and Integral of the Heaviside Step Function

Originally appeared at:
http://behindtheguesses.blogspot.com/2009/06/derivative-and-integral-of-heaviside.html
Eli Lansey — elansey@gmail.com
June 30, 2009
(cc) BY-NC-SA

The Setup

(a) Large horizontal scale

(b) "Zoomed in"

Figure 1: The Heaviside step function. Note how it doesn't matter how close we get to $x=0$ the function looks exactly the same.

The Heaviside step function $H(x)$, sometimes called the Heaviside theta function, appears in many places in physics, see [1] for a brief discussion. Simply put, it is a function whose value is zero for $x<0$ and one for $x>0$. Explicitly,

$$
H(x)=\left\{\begin{array}{ll}
0 & x<0 \tag{1}\\
1 & x>0
\end{array} .\right.
$$

We won't worry about precisely what its value is at zero for now, since it won't effect our discussion, see [2] for a lengthier discussion. Fig. 1 plots $H(x)$. The key point is that crossing zero flips the function from 0 to 1 .

Derivative - The Dirac Delta Function

Say we wanted to take the derivative of H. Recall that a derivative is the slope of the curve at at point. One way of formulating this is

$$
\begin{equation*}
\frac{d H}{d x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta H}{\Delta x} . \tag{2}
\end{equation*}
$$

Now, for any points $x<0$ or $x>0$, graphically, the derivative is very clear: H is a flat line in those regions, and the slope of a flat line is zero. In terms of (2), H does not change, so $\Delta H=0$ and $d H / d x=0$. But if we pick two points, equally spaced on opposite sides of $x=0$, say $x_{-}=-a / 2$

Figure 2: The derivative (a), and integral (b) of the Heaviside step function.
and $x_{+}=a / 2$, then $\Delta H=1$ and $\Delta x=a$. It doesn't matter how small we make $a, \Delta H$ stays the same. Thus, the fraction in (2) is

$$
\begin{align*}
\frac{d H}{d x} & =\lim _{a \rightarrow 0} \frac{1}{a} \tag{3}\\
& =\infty .
\end{align*}
$$

Graphically, again, this is very clear: H jumps from 0 to 1 at zero, so it's slope is essentially vertical, i.e. infinite. So basically, we have

$$
\delta(x) \equiv \frac{d H}{d x}= \begin{cases}0 & x<0 \tag{4}\\ \infty & x=0 \\ 0 & x>0\end{cases}
$$

This function is, loosely speaking, a "Dirac Delta" function, usually written as $\delta(x)$, which has seemingly endless uses in physics.

We'll note a few properties of the delta function that we can derive from (4). First, integrating it from $-\infty$ to any $x_{-}<0$:

$$
\begin{align*}
\int_{-\infty}^{x_{-}} \delta(x) d x & =\int_{-\infty}^{x_{-}}\left(\frac{d H}{d x}\right) d x \\
& =H\left(x_{-}\right)-H(-\infty) \tag{5}\\
& =0
\end{align*}
$$

since $H\left(x_{-}\right)=H(-\infty)=0$. On the other hand, integrating the delta function to any point greater than $x=0$:

$$
\begin{align*}
\int_{-\infty}^{x_{+}} \delta(x) d x & =\int_{-\infty}^{x_{+}}\left(\frac{d H}{d x}\right) d x \\
& =H\left(x_{+}\right)-H(-\infty) \tag{6}\\
& =1
\end{align*}
$$

since $H\left(x_{+}\right)=1$.
At this point, I should point out that although the delta function blows up to infinity at $x=0$, it still has a finite integral. An easy way of seeing how this is possible is shown in Fig. 2(a). If the
width of the box is $1 / a$ and the height is a, the area of the box (i.e. its integral) is 1 , no matter how large a is. By letting a go to infinity we have a box with infinite height, yet, when integrated, has finite area.

Integral - The Ramp Function

Now that we know about the derivative, it's time to evaluate the integral. I have two methods of doing this. The most straightforward way, which I first saw from Prof. T.H. Boyer, is to integrate H piece by piece. The integral of a function is the area under the curve, ${ }^{1}$ and when $x<0$ there is no area, so the integral from $-\infty$ to any point less than zero is zero. On the right side, the integral to a point x is the area of a rectangle of height 1 and length x, see Fig. 1(a). So, we have

$$
\int_{-\infty}^{x} H d x=\left\{\begin{array}{ll}
0 & x<0 \tag{7}\\
x & x>0
\end{array} .\right.
$$

We'll call this function a "ramp function," $R(x)$. We can actually make use of the definition of H and simplify the notation:

$$
\begin{equation*}
R(x) \equiv \int H d x=x H(x) \tag{8}
\end{equation*}
$$

since $0 \times x=0$ and $1 \times x=x$. See Fig. 2(b) for a graph - and the reason for calling this a "ramp" function.

But I have another way of doing this which makes use of a trick that's often used by physicists: We can always add zero for free, since anything $+0=$ anything. Often we do this by adding and subtracting the same thing,

$$
\begin{equation*}
A=(A+B)-B, \tag{9}
\end{equation*}
$$

for example. But we can use the delta function (4) to add zero in the form

$$
\begin{equation*}
0=x \delta(x) \tag{10}
\end{equation*}
$$

Since $\delta(x)$ is zero for $x \neq 0$, the x part doesn't do anything in those regions and this expression is zero. And, although $\delta(x)=\infty$ at $x=0, x=0$ at $x=0$, so the expression is still zero.

So we'll add this on to H :

$$
\begin{align*}
H & =H+0 \\
& =H+x \delta(x) \\
& =H+x \frac{d H}{d x} \quad \text { by }(4) \tag{11}\\
& =\frac{d x}{d x} H+x \frac{d H}{d x} \\
& =\frac{d}{d x}[x H(x)]
\end{align*}
$$

where the last step follows from the "product rule" for differentiation. At this point, to take the integral of a full differential is trivial, and we get (8).

[^0]
References

[1] M. Springer. Sunday function [online]. February 2009. Available from: http://scienceblogs.com/builtonfacts/2009/02/sunday_function_22.php [cited 30 June 2009].
[2] E.W. Weisstein. Heaviside step function [online]. Available from: http://mathworld.wolfram.com/HeavisideStepFunction.html [cited 30 June 2009].

[^0]: ${ }^{1}$ To be completely precise, it's the (signed) area between the curve and the line $x=0$.

