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The Setup
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(a) Large horizontal scale
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(b) “Zoomed in”

Figure 1: The Heaviside step function. Note how it doesn’t matter how close we get to x = 0 the
function looks exactly the same.

The Heaviside step function H(x), sometimes called the Heaviside theta function, appears in
many places in physics, see [1] for a brief discussion. Simply put, it is a function whose value is
zero for x < 0 and one for x > 0. Explicitly,

H(x) =

{
0 x < 0,

1 x > 0
. (1)

We won’t worry about precisely what its value is at zero for now, since it won’t effect our discussion,
see [2] for a lengthier discussion. Fig. 1 plots H(x). The key point is that crossing zero flips the
function from 0 to 1.

Derivative – The Dirac Delta Function

Say we wanted to take the derivative of H. Recall that a derivative is the slope of the curve at
at point. One way of formulating this is

dH

dx
= lim

∆x→0

∆H

∆x
. (2)

Now, for any points x < 0 or x > 0, graphically, the derivative is very clear: H is a flat line in those
regions, and the slope of a flat line is zero. In terms of (2), H does not change, so ∆H = 0 and
dH/dx = 0. But if we pick two points, equally spaced on opposite sides of x = 0, say x− = −a/2
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Figure 2: The derivative (a), and integral (b) of the Heaviside step function.

and x+ = a/2, then ∆H = 1 and ∆x = a. It doesn’t matter how small we make a, ∆H stays the
same. Thus, the fraction in (2) is

dH

dx
= lim

a→0

1
a

= ∞.
(3)

Graphically, again, this is very clear: H jumps from 0 to 1 at zero, so it’s slope is essentially vertical,
i.e. infinite. So basically, we have

δ(x) ≡ dH

dx
=





0 x < 0
∞ x = 0
0 x > 0

. (4)

This function is, loosely speaking, a “Dirac Delta” function, usually written as δ(x), which has
seemingly endless uses in physics.

We’ll note a few properties of the delta function that we can derive from (4). First, integrating
it from −∞ to any x− < 0:

∫ x−

−∞
δ(x)dx =

∫ x−

−∞

(
dH

dx

)
dx

= H(x−)−H(−∞)
= 0

(5)

since H(x−) = H(−∞) = 0. On the other hand, integrating the delta function to any point greater
than x = 0:

∫ x+

−∞
δ(x)dx =

∫ x+

−∞

(
dH

dx

)
dx

= H(x+)−H(−∞)
= 1

(6)

since H(x+) = 1.
At this point, I should point out that although the delta function blows up to infinity at x = 0,

it still has a finite integral. An easy way of seeing how this is possible is shown in Fig. 2(a). If the
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width of the box is 1/a and the height is a, the area of the box (i.e. its integral) is 1, no matter
how large a is. By letting a go to infinity we have a box with infinite height, yet, when integrated,
has finite area.

Integral – The Ramp Function

Now that we know about the derivative, it’s time to evaluate the integral. I have two methods of
doing this. The most straightforward way, which I first saw from Prof. T.H. Boyer, is to integrate
H piece by piece. The integral of a function is the area under the curve,1 and when x < 0 there is
no area, so the integral from −∞ to any point less than zero is zero. On the right side, the integral
to a point x is the area of a rectangle of height 1 and length x, see Fig. 1(a). So, we have

∫ x

−∞
H dx =

{
0 x < 0,

x x > 0
. (7)

We’ll call this function a “ramp function,” R(x). We can actually make use of the definition of H
and simplify the notation:

R(x) ≡
∫

H dx = xH(x) (8)

since 0× x = 0 and 1× x = x. See Fig. 2(b) for a graph – and the reason for calling this a “ramp”
function.

But I have another way of doing this which makes use of a trick that’s often used by physicists:
We can always add zero for free, since anything + 0 = anything. Often we do this by adding
and subtracting the same thing,

A = (A + B)−B, (9)

for example. But we can use the delta function (4) to add zero in the form

0 = x δ(x). (10)

Since δ(x) is zero for x 6= 0, the x part doesn’t do anything in those regions and this expression is
zero. And, although δ(x) = ∞ at x = 0, x = 0 at x = 0, so the expression is still zero.

So we’ll add this on to H:

H = H + 0
= H + x δ(x)

= H + x
dH

dx
by (4)

=
dx

dx
H + x

dH

dx

=
d

dx
[xH(x)] ,

(11)

where the last step follows from the “product rule” for differentiation. At this point, to take the
integral of a full differential is trivial, and we get (8).

1To be completely precise, it’s the (signed) area between the curve and the line x = 0.
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