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notElon asked me to discuss, and to try and derive the Schrödinger equation, so I’ll give it a
shot. This derivation is partially based on Sakurai,[1] with some differences.

A brief walk through classical mechanics

Say we have a function of f(x) and we want to translate it in space to a point (x + a). To do
this, we’ll find a “space translation” operator Sa which, when applied to f(x), gives f(x+a). That
is,

f(x + a) = Saf(x) (1)

We’ll expand f(x + a) in a Taylor series:

f(x + a) = f(x) + a
df(x)
dx

+
a2

2!
d2f(x)

dx2
+ . . .

=
[
1 + a

d

dx
+

a2

2!
d2

dx2
+ . . .

]
f(x)

(2)

which can be simplified using the series expansion of the exponential1 to

e[a
d

dx ]f(x) (3)

from which we can conclude that
Sa = e[a

d
dx ] (4)

If you do a similar thing with rotations around the z-axis, you’ll find that the rotation operator is

Rθ = eθLz , (5)

where Lz is the z-component of the angular momentum.
Comparing (4) and (5), we see that both have an exponential with a parameter (distance or

angle) multiplied by something ( d
dx or L). We’ll call the something the “generator of the transfor-

mation.” So, the generator of space translation is d
dx and the generator of rotation is L. So, we’ll

write an arbitrary transformation operator O through a parameter α as

Oa = eαG (6)

where G is the generator of this particular transformation.2 See [2] for an example with Lorentz
transformations.

1ex =
∑∞

n=0
xn

n!
= 1 + x + x2

2!
+ . . .

2There are other ways to do this, differing by factors of i in the definition of the generators and in the construction
of the exponential, but I’m sticking with this one for now.
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From classical to quantum

In classical dynamics, the time derivative of a quantity f is given by the Poisson bracket:

df

dt
= {f, H} (7)

where H is the classical Hamiltonian of the system and { , } is shorthand for a messy equation.[3]
In quantum mechanics this equation is replaced with

df

dt
= i~[f,H] (8)

where the square brackets signify a commutation relation and H is the quantum mechanical
Hamiltonian.[4] This holds true for any quantity f , and i~ is a number which commutes with
everything, so we can argue that the quantum mechanical Hamiltonian operator is related to the
classical Hamiltonian by

H = i~H ⇒ H = −iH/~ (9)

specifically.
Additionally, we can extend from here that any quantum operator G is written in terms of its

classical counterpart G by
G = −iG/~. (10)

So, using (4) the quantum mechanical space translation operator is given by

Sa = e[−i a
~

d
dx ] (11)

and, using (5), the rotation operator by

Rθ = e−i θ
~Lz (12)

or, from (6) any arbitrary (unitary) transformation, U , can be written as

U = e−i α
~G, (13)

where G is (an Hermitian operator and is) the classical generator of the transformation.

Time translation of a quantum state

Consider a quantum state at time t described by the wavefunction ψ(~r, t). To see how the state
changes with time, we want to find a “time-translation” operator T∆t which, when applied to the
state ψ(~r, t), will give ψ(~r, t + ∆t). That is,

ψ(~r, t + ∆t) = T∆tψ(~r, t). (14)

From our previous discussion we know that if we know the classical generator of time translation we
can write T using (13). Well, classically, the generator of time translations is the Hamiltonian![5]
So we can write

T∆t = e−i∆t
~ H (15)
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and (14) becomes
ψ(~r, t + ∆t) = e−i∆t

~ H ψ(~r, t). (16)

This holds true for any time translation, so we’ll consider a small time translation and expand
(16) using a Taylor expansion3 dropping all quadratic and higher terms:

ψ(~r, t + ∆t) ≈
[
1− i

∆t

~
H + . . .

]
ψ(~r, t) (17)

Moving things around gives

Hψ(~r, t) = i~
[
ψ(~r, t + ∆t)− ψ(~r, t)

∆t

]
(18)

In the limit ∆t → 0 the righthand side becomes a partial derivative giving the Schrödinger equation

Hψ(~r, t) = i~
∂ψ(~r, t)

∂t
(19)

For a system with conserved total energy, the classical Hamiltonian is the total energy

H =
~p 2

2m
+ V (20)

which, making the substitution for quantum mechanical momentum ~p = i~∇ and substituting into
(19) gives the familiar differential equation form of the Schrödinger equation

− ~2

2m
∇2ψ(~r, t) + V ψ(~r, t) = i~

∂ψ(~r, t)
∂t

(21)
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3Kind of the reverse of how we got to this whole exponential notation in the first place...
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